Uniqueness of Mathematics

A very meaningful sentence from Introduction to Proofs and Real Analysis, written by Richard C. Penney:

“There is a fundamental difference between mathematics and other sciences. In most sciences, one does experiments to determine laws. A “law” will remain a law, only so long as it is not contradicted by experimental evidence. Newtonian physics was accepted as valid until it was contradicted by experiment, resulting in the discovery of the theory of relativity.

Mathematics, on the other hand, is based on absolute certainty. A mathematician may feel that some mathematical law is true on the basis of, say, a thousand experiments. He/she will not accept it as true, however, until it is absolutely certain that it can never fail. Achieving this kind of certainty requires constructing a logical argument showing the law’s validity–i.e. constructing a proof.”

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s