# Taylor Series

Came to the Taylor series while I was studying the fundamental element of chaos theory.

So what is Taylor series?

Taylor series is a representation of a function as an infinite sum of terms, calculated from the values of its derivative at a single point ［Wikipedia］.

Let’s look at the definition.

Given a function $f(x)$ and $f(x)$ is differentiable infinitely at a point $a$ of a real or complex domain. Then, we say that, for a value $x$ near $a$, $f(x)$ can be approximated with Taylor series. That is, $\displaystyle \sum^{\infty}_{n=0} \frac{f^{(n)}(a) }{n !} (x-a)^n$.

where $n!$ denotes the factorial of $n$ and $f^{(n)}(a)$ denotes the $n$th derivatives of $f$ at point $a$.

#

OK. Let’s see for an example.

We all know that the derivative of $e^x$ is also $e^x$. In other words, $e^x$ can be differentiated infinitely.

Every algebra has a value of 1 when power with 0, except $0^0$ which is undefined. So, how about $e^{0.001}$ ?

Of cause we can use calculator to find out the value. But, let’s try with Taylor series method, i.e. $f(0.001) = \frac{f^{(0)}(0)}{0!}(0.001)^0 + \frac{f^{(1)}(0)}{1!}(0.001)^1 + \cdots + \frac{f^{(n)}(0)}{n!}(0.001)^n$

#

#
Let’s calculate this with Python.

 #python code import scipy 

scipy.e**0



def taylor_euler(a, x, n):

 result = 0 for i in range(0, n): t1 = scipy.e ** (a) t2 = (x - a) ** i t3 = scipy.factorial(i) result += t1 * t2 / t3 

return result

 

print 'Answer of e^0.001 is %0.20f' % scipy.e **0.001

 print 'OK. Let''s approximate e^0.001 from e^0 by slowly increase the iterations...' for i in range(10): ans = taylor_euler(0,0.001, i) print '[%02d] ans = %0.20f' % (i+1, ans) 

The output is:

 Answer of e^0.001 is 1.00100050016670838460 OK. Lets approximate e^0.001 from e^0 by slowly increase the iterations...  ans = 0.00000000000000000000  ans = 1.00000000000000000000  ans = 1.00099999999999988987  ans = 1.00100049999999995975  ans = 1.00100050016666664021  ans = 1.00100050016670838460  ans = 1.00100050016670838460  ans = 1.00100050016670838460  ans = 1.00100050016670838460  ans = 1.00100050016670838460 

As you may see, we have obtained a reasonable close value of $e^{0.001}$ at iteration 6.